Strategy Skeleton
Backtesting skeleton
Backtesting using SharkSigma
def setup_strategy(self):
pass
def process_candle(self):
pass
Backtesting from Orca module directly requires additional setup.
First, you will need to import the Orca module with the import statement. Next, invoke a strategy class and inherit the properties of BaseIntradayStrategy class. setup_strategy and process_candle are methods that will have to be used in the strategy class.
Finally, a dictionary user_input_dict containing user inputs such as the instruments on which backtesting has to be done along with other parameters have to be passed.
User input dictionary parameters:
instrument_list:
table_name:
start_date
end_date
interval
initial_capital
market_hours
data_input_type
user_file_name
path_type
from Orca import *
class Custom_Strategy(BaseIntradayStrategy):
def setup_strategy(self):
pass
def process_candle(self):
pass
user_input_dict = {
'instrument_list' : ['AAPL'],
'table_name' : 'sp500_5m',
'start_date' : "08-01-2020",
'end_date' : "09-30-2020",
'interval' : '15min',
'initial_capital' : 50000,
'market_hours' : 1,
'data_input_type' : 'db',
'user_file_name' : 'Strategy_ORB_V01',
'root_file_path': os.path.splitext(__file__)[0], #Current File Path
'path_type': 'AWS'
}
def main():
if __name__ == '__main__':
run_object = user_input_invoke_run(user_input_dict = user_input_dict, strategy_name=Custom_Strategy)
run_object.invoke_run()
main()
Last updated
Was this helpful?